
Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico
Logging Sensor Data TMP36

• Introduction
• Raspberry Pi Pico
• TMP36 Temperature Sensor
• Datalogging and Analysis
– File Handling in Python
–Datalogging Example
–Data Analysis Example
– Final Datalogging and Analysis Solution

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

• In this Tutorial we will log data from a Temperature
Sensor using MicroPython.
– We will use a basic TMP36 Temperature Sensor

• We will Log Temperature Data on a File on the
Raspberry Pi Pico Device.

• Then we will copy the File to our PC and are then
ready to do some Data Analysis.

• We will create a simple Python Script that opens the
File and Plot the Data. Here we will use ordinary
Python and the matplotlib.

Introduction

• Raspberry Pi Pico
• A Micro-USB cable
• A PC with Thonny Python Editor (or another

Python Editor)
• Breadboard
• Electronics Components like LED, Resistors,

Jumper wires, etc.
• Sensor, we will use a TMP36 Temperature

Sensor in this Tutorial

What do you need?

TMP36

Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico

Table of Contents

• Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

• Raspberry Pi Pico has similar features as Arduino
devices

• Raspberry Pi Pico is typically used for Electronics
projects, IoT Applications, etc.

• You typically use MicroPython, which is a
downscaled version of Python, in order to program it

Raspberry Pi Pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

Pi
co

 P
in

ou
t

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.raspberrypi.com/products/raspberry-pi-pico/

Thonny
• Thonny is a simple and user-friendly

Python Editor
• Cross-platform: Windows, macOS and

Linux
• Built-in support for the Raspberry Pi Pico

hardware/MicroPython firmware
• Its free
• Download: https://thonny.org

https://thonny.org/

• MicroPython is a downscaled version of Python
• It is typically used for Microcontrollers and

constrained systems (low memory, etc.)
• Examples of such Microcontrollers that have

tailormade MicroPython firmware are Raspberry
Pi Pico and Micro:bit

• https://micropython.org
• https://docs.micropython.org/en/latest/

MicroPython

https://micropython.org/
https://docs.micropython.org/en/latest/

• The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico
• You can install the MicroPython

Firmware manually or you can use
the Thonny Editor

MicroPython Firmware

Install MicroPython Firmware using Thonny

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

Hans-Petter Halvorsen

https://www.halvorsen.blog

TMP36 Temperature
Sensor

Table of Contents

TMP36

TMP36 Temperature Sensor
A Temperature sensor like TM36 use a
solid-state technique to determine the
temperature.

They use the fact as temperature
increases, the voltage across a diode
increases at a known rate.

https://learn.adafruit.com/tmp36-temperature-sensor

https://learn.adafruit.com/tmp36-temperature-sensor

TMP36 Wiring

https://pico.pinout.xyz

Pin 26

https://pico.pinout.xyz/

ADC Value to Voltage Value

ADC = 0 -> 0v
ADC = 65535 -> 3.3v

The read_u16() function gives a value between 0 and 65535. It must be converted to a
Voltage Signal 0 - 3.3v

3.3𝑉

0

𝑦(𝑥) = 𝑎𝑥 + 𝑏

0𝑉 1023

𝑦(𝑥) =
3.3

65535
𝑥

This gives the following conversion formula:

Analog Pins: The built-in Analog-to-Digital Converter (ADC) on Pico is 16bit, producing
values from 0 to 65535.

Voltage to degrees Celsius
Convert form Voltage (V) to degrees Celsius
From the Datasheet we have:

(𝑥!, 𝑦!) = (0.75𝑉, 25°𝐶)
(𝑥", 𝑦") = (1𝑉, 50°𝐶)

There is a linear relationship between
Voltage and degrees Celsius:

𝑦 = 𝑎𝑥 + 𝑏

We can find a and b using the following
known formula:

𝑦 − 𝑦! =
𝑦" − 𝑦!
𝑥" − 𝑥!

(𝑥 − 𝑥!)

This gives:

𝑦 − 25 =
50 − 25
1 − 0.75 (𝑥 − 0.75)

Then we get the following formula:
𝑦 = 100𝑥 − 50

Datasheet: https://cdn-learn.adafruit.com/assets/assets/000/010/131/original/TMP35_36_37.pdf

https://cdn-learn.adafruit.com/assets/assets/000/010/131/original/TMP35_36_37.pdf

TMP36 Example
from machine import ADC
from time import sleep

adcpin = 26
tmp36 = ADC(adcpin)

while True:
adc_value = tmp36.read_u16()
volt = (3.3/65535)*adc_value
degC = (100*volt)-50
print(round(degC, 1))
sleep(5)

TMP36 Example

Datalogging and Analysis

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Datalogging and Analysis

• We will read data from a Temperature Sensor
using Raspberry Pi Pico and MicroPython

• We will then Log Temperature Data on a File on
the Pico Device

• Then we will copy the File to our PC and are then
ready to do some Data Analysis

• Finally, we will create a simple Python Script that
opens the File and Plot the Data. Here we will
use ordinary Python and the matplotlib

Datalogging and Analysis
TMP36

2. Save Data to local File

3. Data Analysis

Copy Data File to PC
for Data Analysis

Read Data from Sensor and store
on local File on Raspberry Pi Pico

1. Read Sensor Data

Plotting Data, Calculate Statistics,
create Data Models, etc.

File Handling in Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

File Handling in Python

file = open("data.txt", "w")

file.write("Hello World")

file.close()
file = open("data.txt", "r")

data = file.read()

file.close()

Write Data to a File:

Read Data from a File:

“w” - write
Use “a” (append) if you don’t
want to delete existing Data

“r” - read

Open and Write Data to File in Python
filename = "data.txt"
file = open(filename, "w")

data = "Hello World"
file.write(data)

file.close()

Save Data to File in a While Loop
from time import sleep

filename = "data.txt"
file = open(filename, "w")

while True:
data = "Hello World\n"
file.write(data)
file.flush()
sleep(5)

file.close()

Here, it is important that you use
flush()inside the While loop in
order to save ("flush") data to the
file in each iteration. If not, the data
may not be saved to the file if you
suddenly unplug the power supply
from the Raspberry Pi Pico, etc.

We use \n for adding a
New Line in each iteration.

Datalogging Example

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Datalogging Example

• We will read data from a Temperature
Sensor using Raspberry Pi Pico and
MicroPython
• We will then Log Temperature Data on

a File on the Pico Device

from machine import ADC
from time import sleep

adcpin = 26
tmp36 = ADC(adcpin)

def ReadTemperature():
adc_value = tmp36.read_u16()
volt = (3.3/65535)*adc_value
temp = (100*volt)-50
degC = round(temp, 1)
print(degC)
return degC

Open File
file = open("tmp36data.txt", "w")

def writefiledata(t, x):
time = str(t)
value = str(round(x, 2))
file.write(time + "\t" + value)
file.write("\n")
file.flush()

k = 0
Ts = 5
while True:

degC = ReadTemperature()
writefiledata(k*Ts, degC)
k = k + 1
sleep(Ts)

Improved Code v2

• We will create a Separate Python Module (a
separate Python File) with 2 Classes

• Class Sensor deals with the sensor reading
• Class File deals with the file writing

from machine import ADC

class Sensor:
def __init__(self, pin):

self.sensor = ADC(pin)

def ReadTemperature(self):
adc_value = self.sensor.read_u16()
volt = (3.3/65535)*adc_value
temp = (100*volt)-50
degC = round(temp, 1)
print(degC)
return degC

class File:
def __init__(self, filename):

self.file = open(filename, "w")

def WriteData(self, t, x):
time = str(t)
value = str(round(x, 2))
self.file.write(time + "\t" + value)
self.file.write("\n")
self.file.flush()

from Datalogging import Sensor, File
from time import sleep

adcpin = 26
tmp36 = Sensor(adcpin)

filename = "tmp36data.txt"
myfile = File(filename)

k = 0
Ts = 5
while True:

degC = tmp36.ReadTemperature()
myfile.WriteData(k*Ts, degC)
k = k + 1
sleep(Ts)

Datalogging.py

Logdata_ex.py

Improved Code v3
• We want to run the Datalogging without

have a PC attached to the Pico
• We need to save the code as “main.py”, then

this code will run when we plug the Pico to a
Power Supply (PS)

• Finally, since we don’t see if the code is
running or not on the Pico, I have added a
code update that toggles the built-in LED in
each iteration inside the While loop

from machine import ADC

class Sensor:
def __init__(self, pin):

self.sensor = ADC(pin)

def ReadTemperature(self):
adc_value = self.sensor.read_u16()
volt = (3.3/65535)*adc_value
temp = (100*volt)-50
degC = round(temp, 1)
print(degC)
return degC

class File:
def __init__(self, filename):

self.file = open(filename, "w")

def WriteData(self, t, x):
time = str(t)
value = str(round(x, 2))
self.file.write(time + "\t" + value)
self.file.write("\n")
self.file.flush()

from Datalogging import Sensor, File
from time import sleep
from machine import Pin

pin = 25
led = Pin(pin, Pin.OUT)

adcpin = 26
tmp36 = Sensor(adcpin)

filename = "tmp36data.txt"
myfile = File(filename)

k = 0
Ts = 5

while True:
degC = tmp36.ReadTemperature()
led.toggle()
myfile.WriteData(k*Ts, degC)
k = k + 1
sleep(Ts)

Datalogging.py main.py

Results

Note! You can unplug the Pico from your PC and
use an external Power Supply to see if the program
is working properly.

You can also click Ctrl + D in the Shell inside the
Thonny Editor to force a soft reboot command

Data Analysis Example

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Python

Data Analysis Example
• We will copy the File to our PC and are

then ready to do some Data Analysis
• Finally, we will create a simple Python

Script that opens the File and Plot the
Data.
• Here we will use ordinary Python and the

matplotlib

Data Analysis Example
import matplotlib.pyplot as plt

Open File
f = open("tmp36data.txt", "r")

Transform File Data into x Array and y Array that can be used for plotting
x = []
y = []
k = 0
for record in f:

record = record.replace("\n", "")
record = record.split("\t")
x.append(int(record[0]))
y.append(float(record[1]))
k=k+1

f.close()

plt.plot(x,y, '-o')
plt.title('Temperature Data from TC74 Sensor')
plt.xlabel('Time[s]')
plt.ylabel('Temperature[°C]')
plt.grid()
plt.show()

Data Analysis

Final Datalogging and
Analysis Solution

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Datalogging
from machine import ADC
import time

class Sensor:
def __init__(self, pin):

self.sensor = ADC(pin)

def ReadTemperature(self):
adc_value = self.sensor.read_u16()
volt = (3.3/65535)*adc_value
temp = (100*volt)-50
degC = round(temp, 1)
return degC

class File:
def __init__(self, filename):

self.file = open(filename, "w")
self.file.write("TimeStamp" + "\t" + "TemperatureValue" + "\n")

def WriteData(self, t, x):
time = str(t)
value = str(round(x, 2))
self.file.write(time + "\t" + value)
self.file.write("\n")
self.file.flush()

def GetDateTime(self):
datetime = time.localtime()

year = str(datetime[0])

month = str(datetime[1])
if (len(month) == 1):

month = "0" + month

day = str(datetime[2])
if (len(day) == 1):

day = "0" + day

hour = str(datetime[3])
if (len(hour) == 1):

hour = "0" + hour

minute = str(datetime[4])
if (len(minute) == 1):

minute = "0" + minute

second = str(datetime[5])
if (len(second) == 1):

second = "0" + second

d = year + "." + month + "." + day
t = hour + ":" + minute + ":" + second
timestamp = d + " " + t
return timestamp

from Datalogging import Sensor, File
from time import sleep
from machine import Pin

pin = 25
led = Pin(pin, Pin.OUT)

adcpin = 26
tmp36 = Sensor(adcpin)

filename = "tmp36data.txt"
myfile = File(filename)

k = 0
Ts = 5

while True:
led.on()
degC = tmp36.ReadTemperature()
timestamp = myfile.GetDateTime()
print(" T = " + str(degC) + "°C" + " @ " + timestamp)

myfile.WriteData(timestamp, degC)
k = k + 1
led.off()
sleep(Ts)

Datalogging.py

main.py

Da
ta

 A
na

ly
sis

import csv
import matplotlib.pyplot as plt

Transform File Data into x Array and y Array that can be used for plotting
x = []
y = []
k = 1

log_file = open("tmp36data.txt", "r", encoding="utf8")
reader = csv.DictReader(log_file, delimiter="\t")
for record in reader:

ts = record["TimeStamp"]
ts = ts.split(" ")
d = ts[0] #Datepart
t = ts[1] #Timepart
x.append(t)

tv = record["TemperatureValue"]
y.append(tv)

k=k+1

plt.plot(x,y, '-o')
plt.title('Temperature Data from TC74 Sensor')
plt.xlabel('Time[s]')
plt.xticks(rotation=270)
plt.ylabel('Temperature[°C]')
plt.grid()
plt.show()

Results

Summary
• We have made a basic Datalogging application that

can run on the Pico without having a PC attached to
it

• The Data was stored on a local File on the Pico itself
• Then we copied the File to the PC and was doing

some basic Data Analysis on the Data stored on the
File

• The Datalogging and Data Analysis System was made
in iterations until we get satisfying results

• Raspberry Pi Pico:
https://www.raspberrypi.com/products/raspberry-pi-pico/

• Raspberry Pi Foundation:
https://projects.raspberrypi.org/en/projects?hardware[]=pico

• Getting Started with Pico:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

• MicroPython:
https://docs.micropython.org/en/latest/index.html

Raspberry Pi Pico Resources

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

